
Jaschob and Riffle Source Code for Biology and Medicine 2012, 7:8
http://www.scfbm.org/content/7/1/8
SOFTWARE REVIEW Open Access
JobCenter: an open source, cross-platform, and
distributed job queue management system
optimized for scalability and versatility
Daniel Jaschob1 and Michael Riffle1,2*
Abstract

Background: Laboratories engaged in computational biology or bioinformatics frequently need to run lengthy,
multistep, and user-driven computational jobs. Each job can tie up a computer for a few minutes to several days,
and many laboratories lack the expertise or resources to build and maintain a dedicated computer cluster.

Results: JobCenter is a client–server application and framework for job management and distributed job execution.
The client and server components are both written in Java and are cross-platform and relatively easy to install. All
communication with the server is client-driven, which allows worker nodes to run anywhere (even behind external
firewalls or “in the cloud”) and provides inherent load balancing. Adding a worker node to the worker pool is as
simple as dropping the JobCenter client files onto any computer and performing basic configuration, which
provides tremendous ease-of-use, flexibility, and limitless horizontal scalability. Each worker installation may be
independently configured, including the types of jobs it is able to run. Executed jobs may be written in any
language and may include multistep workflows.

Conclusions: JobCenter is a versatile and scalable distributed job management system that allows laboratories to
very efficiently distribute all computational work among available resources. JobCenter is freely available at http://
code.google.com/p/jobcenter/.

Keywords: Computing, Bioinformatics, Computational biology, Job management, Distributed, Open-source,
Cross-platform, Grid computing, Job scheduler, Batch processing
Background
Biomedical research laboratories often have need to run
lengthy, computationally intensive bioinformatics and
computational biology applications. These applications
may include items such as finding sequence homologs
using BLAST [1]; running proteomics search algorithms,
such as Mascot [2], SEQUEST [3], or PeptideProphet [4];
statistically analyzing and producing visual outputs for
large, complex datasets; or automatically executing mul-
tistep workflows that take raw data all the way to post-
processed visualization via a database-driven web site.
Often these applications are installed in a non-standard
ad hoc manner on laboratory computers, and users log
* Correspondence: mriffle@uw.edu
1Department of Biochemistry, University of Washington, 1705 NE Pacific St,
Box 357350, Seattle, WA 98195, USA
2Department of Genome Sciences, University of Washington, Seattle, WA
98195, USA

© 2012 Jaschob and Riffle; licensee BioMed Ce
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
into these machines to manually execute the software as
needed. Not only does this require continual training of
new lab members (as to the location, interface, and
quirks of particular software), it is an inefficient use of la-
boratory resources. Relatively few of the available compu-
ters will carry the majority of the computational burden,
and in the case of web-driven applications, the execution
will potentially tie up the web server itself--limiting per-
formance, resource availability, and possibly crashing the
server itself. Ideally, execution of these applications
would take place on dedicated specially-configured hard-
ware, such as computer clusters; however many labora-
tories may lack the resources to dedicate hardware
exclusively to the execution of these applications, let
alone the expertise and resources required to design,
install, and maintain a computer cluster.
Here we present JobCenter, a conceptually simple soft-

ware package for managing the execution of computational
ntral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

http://code.google.com/p/jobcenter/
http://code.google.com/p/jobcenter/
mailto:mriffle@uw.edu
http://creativecommons.org/licenses/by/2.0


Jaschob and Riffle Source Code for Biology and Medicine 2012, 7:8 Page 2 of 6
http://www.scfbm.org/content/7/1/8
jobs in a distributed computing environment. It uses an
implementation of a client server model for job manage-
ment, where the clients request work from the server and
the server then decides which job to send based on queued
jobs, their priorities, and the client’s reported capabilities.
Because the client is written in Java and is cross-platform,
JobCenter may effectively utilize all computational
resources available in the heterogeneous “organically
grown” computing environments typically found in labora-
tories. To turn a computer into a worker, simply install the
client and perform basic configuration. Because the client
initiates communication, it may exist on any machine cap-
able of communicating with the server--whether it’s on the
same local network, behind an external firewall, or a virtual
server “in the cloud”. This provides JobCenter with signifi-
cant horizontal scalability. Both the client and server are
relatively easy to install, and a simple graphical user inter-
face for viewing and managing jobs is included. JobCenter
is open-source and freely available at http://code.google.
com/p/jobcenter/.

Implementation
Overall architecture
JobCenter implements a distributed client–server archi-
tecture using client pull communication, where commu-
nication is never initiated by the server (Figure 1). All
communication with the server takes place over standard
HTTP using REST web services and XML.

Client
The client is written in the Java programming language
and may be run on any platform where version 1.6 or
later of the Sun Java Runtime Environment (JRE) is
available. The client is organized as a core set of Java
classes and one or more user-created modules. A mod-
ule is a set of Java classes adhering to the module inter-
face defined by JobCenter, and is responsible for the
execution of a particular type of job (e.g., running
BLAST). Modules are essentially Java wrappers for the
execution of programs (which may or may not be writ-
ten in Java) that adhere to this interface. Each module is
loaded using separate Java class loaders in order to avoid
namespace collisions of classes or Java libraries used by
individual modules or by JobCenter itself (Figure 2).
Each module is deployed as a separate directory in the
modules directory of a JobCenter installation and are
detected at start up and subsequently communicated to
the server as the types of jobs the client is capable of
executing.
The client follows a cycle of sleeping (configurable

duration), requesting work, executing work, reporting
status to server, and requesting more work (Figure 3).
The client initiates contact with the server via web ser-
vices to request work, communicating its unique
identifier string (used for authentication, see “Security”
below) and the types jobs it is configured to run (mod-
ules present at startup). Which jobs are returned for
execution is solely at the discretion of the server. Each
job runs in a separate thread, and the number of job
threads the client may run simultaneously is configur-
able in the client’s properties file. Upon completion of
the job, the client reinitiates contact with the server
reporting the status (success or error), messages, and
other data relevant to job completion to the server.
Clients also establish periodic connections via web ser-

vices to the server solely to report that they are still up
and running and that they will report in again in a set
number of seconds (configurable at the client level). If a
client fails to report to the server after this time has
elapsed, the server may respond by triggering an alarm
that sends an email to the administrator (configurable at
the server level).
Server
The server is written in Java and implemented as a Java
web application meant to be run using a Java servlet
container, such as Apache Tomcat. Accordingly, the ser-
ver is cross platform and relatively simple to install--a
matter of deploying a Web application ARchive (WAR)
file to the appropriate directory and performing config-
uration. The server exposes methods for performing all
necessary operations using REST web services and
XML. These methods include submitting new jobs;
requesting jobs for work; returning lists of pending, run-
ning, and completed jobs; updating jobs statuses; and so
forth. The full list of interfaces, options, and formats is
available in the documentation on the source code
repository.
On the backend, the server interfaces with a relational

database management system (RDBMS) to interact with
job queue data. As currently configured, JobCenter uses
the MySQL RDBMS, and all SQL necessary to create the
jobs database is available at the source code repository.
Graphical user interface
JobCenter includes a simple implementation of a graph-
ical user interface (GUI), the functionality of which is
described in more detail in “RESULTS AND DISCUS-
SION.” The GUI is written in Java and implemented as a
Java web application meant to be run using a Java servlet
container, such as Apache Tomcat. The GUI is entirely
independent from the server component of JobCenter,
and interacts with the server purely through web ser-
vices. A custom-developed GUI could conceivably be
developed with moderate effort that utilized the same
web services and improved the interface for specific
needs or to display specific information.

http://code.google.com/p/jobcenter/
http://code.google.com/p/jobcenter/


Figure 1 A depiction of the client-pull architecture of JobCenter and four possible types of client-initiated communication with the
JobCenter server. (a) Software responsible for submitting jobs to the JobCenter server initiate a connection with the server, communicating
authentication credentials and data describing the job. (b) Software interested in the data in the job queue database, such as a GUI for managing
the database, communicate with the server sending requests for data. (c) Worker nodes (computers with the JobCenter client installed)
periodically initiate a connection with the server requesting work. (d) Upon completion of the work, the client initiates a connection with the
server to communicate the status of the job and any messages that resulted from execution.

Jaschob and Riffle Source Code for Biology and Medicine 2012, 7:8 Page 3 of 6
http://www.scfbm.org/content/7/1/8
Security
Authentication is based on unique identifier strings con-
figured in the properties file of each client and the IP
addresses from which those unique string identifiers
may connect. This prevents unauthorized access to view-
ing, submitting, or, changing job information in the
database. The pairing of unique strings and IP addresses
is configured in the database in the “node_access_rule”
table.

Results and discussion
Please note that more detailed instructions regarding in-
stalling, configuring, and using JobCenter are available at
the JobCenter source code web site at http://code.google.
com/p/jobcenter/.

Using JobCenter
In order for JobCenter to begin executing a new type of
job, several steps must be undertaken. If not already done,
the JobCenter server must be installed and configured on
a computer that may be reached via a network from all cli-
ent nodes. An entry must be made for the new job type in
the JobCenter database, which includes a unique identifier
string for that job type, the minimum version required to
execute that job (prevents worker nodes with obsolete ver-
sions from executing the job), and priority of that job so
the server may send out the most important work first.
Additionally, code must be added to an existing applica-
tion that will submit requests to perform the work to the
JobCenter server. Once this is done a module must be
developed for executing this type of job.
A module is a set of Java classes adhering to the Job-

Center module interface that operate as a wrapper
around any program that needs to be run. Modules may
be responsible for executing any computational oper-
ation, such as Perl scripts, R or Stata scripts, Matlab
programs, Java programs, compiled binaries, and so on.
The JobCenter distribution includes a premade module
for executing any program from the command line of
Linux or UNIX; however, the execution of more com-
plex programs may require basic Java programming to
develop a module to act as a wrapper for the program.
Once the module is developed, it must be installed on a
client node in order for the job to be executed.

http://code.google.com/p/jobcenter/
http://code.google.com/p/jobcenter/


Figure 2 JobCenter leverages Java class loaders to separately
load modules with their own namespaces to avoid library,
package, class, or interface collisions with the main JobCenter
classes or other modules. When executed, JobCenter loads a
minimal set of root classes and a single external library that are
primarily responsible for loading the main classes using a new class
loader. These main classes contain the majority of code and libraries
necessary for running JobCenter and are responsible for loading
modules using a new class loader for each module. Typically, classes
loaded in this manner would share namespace with their parent
class loader (main), but the parent class loader for modules is
explicitly set to be the root class loader. This separates module
namespaces from each other, as well as from the large set of main
classes and libraries that run JobCenter.

Jaschob and Riffle Source Code for Biology and Medicine 2012, 7:8 Page 4 of 6
http://www.scfbm.org/content/7/1/8
A client node is any computer on which the JobCenter
client software has been installed, configured, and is
running. Creating a new client node, then, is a matter of
installing, configuring, and running the client software
on any computer. Installing a module on existing client
nodes consists of placing the Java classes for a module in
a subdirectory of the modules directory in the client in-
stallation and restarting the client. All installed modules
are automatically detected on client start up. Once done,
the client will immediately be capable of processing jobs
of the new type.

Graphical user interface
A simple graphical user interface (GUI) is available with
the JobCenter that provides basic functionality for view-
ing and managing jobs submitted to a JobCenter server.
From this interface users may list all pending, com-
pleted, and failed jobs. Jobs may be viewed independ-
ently or grouped together by requests. A request in
JobCenter is an umbrella for multiple jobs, which consti-
tute independent steps in the single execution of a mul-
tistep workflow, or job chain.
From this list users may view specific jobs, where they

may see the job parameters and job status (e.g., pending,
running, stalled, failed). For pending or failed jobs, users
may cancel the job. And for failed jobs, users may
requeue the job. Each attempted execution of a specific
job in JobCenter is called a run (jobs that result in errors
may be requeued, which results in multiple runs for a
job). On this page, users may view all attempted runs for
a job in chronological order and their exit status and all
error messages logged for the run, if any.
Additionally, the GUI has the option of displaying

the results of periodic check-ins by active clients, dis-
playing which clients have checked in, when they last
checked in, whether or not they are delinquent in
checking in, and which jobs the client is currently
running.
The provided GUI provides only basic functionality,

but it may be expanded, customized, or entirely rewrit-
ten in any programming language in order to better pro-
vide the specific needs of an organization. The GUI
communicates with the JobCenter server exclusively via
web services, and the same web services may be used by
any programming language.

Current usage
JobCenter is currently used to process multiple types of
jobs by the Yeast Resource Center (YRC) at the University
of Washington in Seattle (http://www.yeastrc.org/). The
server component is installed on the YRC production web
server, a multi-core Xeon machine running Apache
Tomcat on top of Red Hat Enterprise Linux. On the
back end, the server connects to MySQL database. The
client has been deployed to eight computers running
various distributions of Linux, five of which are rack-
mounted blades dedicated solely to running as JobCenter
clients and are running behind a firewall external to the
JobCenter server.
An example of a service supported by JobCenter is the

web-driven prediction of signal peptides and transmem-
brane helices using the Philius [5] prediction algorithm.
On the web site, users may submit protein sequences or
entire protein FASTA [6] sequence files to be processed.
When this is done, the web server submits a job to the Job-
Center server using web services. Fulfilling the request
requires multiple phases of execution, the first of which
must be carried out on the web server. A JobCenter client
on the web server, then, requests work and is delivered the
job by the server. The job completes, but submits a new
job to the server for the next phase of execution. A Job-
Center client on one of the dedicated clients requests work
and is delivered the next phase of execution, which

http://www.yeastrc.org/


Figure 3 A flow chart depicting the start up and ongoing behavior and decision-making of the JobCenter client with regards to
sleeping, requesting work, and processing work.

Jaschob and Riffle Source Code for Biology and Medicine 2012, 7:8 Page 5 of 6
http://www.scfbm.org/content/7/1/8
includes the actual application of the Philius software to
the data.
Other examples of JobCenter in use by the YRC in-

clude the upload of tandem mass spectrometry (MS/
MS) proteomics data to the database and the upload of
fluorescence microscopy data to the YRC Public Image
Repository [7]. In both cases, requests are initiated by
users of a web site, and the web server submits a job to
the JobCenter server for the requests. In the case of
uploading MS/MS data, the entire upload process is
handled by a single job. The client requests work,
receives the job, connects to an external server, down-
loads the data, parses and inserts the data into a rela-
tional database, and notifies the user via email when
complete. In the case of uploading fluorescence micros-
copy data, the request is handled by a chain of jobs exe-
cuted by JobCenter clients on multiple servers, similar
to the Philius process.
Additionally, a module has been developed for BLAST

that allows for the integration of BLAST searches into
the YRC Public Data Repository [8] web interface, allow-
ing users to find protein annotations and experimental
data using sequence-based searches against a multi-
organism sequence database containing over 45 million
distinct sequences. Search requests are submitted to the
JobCenter server and distributed to worker nodes that
are configured to execute BLAST jobs. Users may wait
for their results in real time or receive an email upon
completion.
Future directions
In addition to the development of new, standardized
modules, future development of JobCenter will focus
largely on: (1) integrating JobCenter with open-source
workflow management systems, and (2) simplifying the
deployment of modules to worker client computers.
Currently, the module must be deployed to every client
computer that will run that type of job and, unless the
program to be run is written in Java and deployed as
part of the module, the program must be installed on
each client computer in precisely the same way. If the
module is updated, it must be redeployed to every client
computer that runs that type of job. Future work will be
devoted to shipping the entire execution environment
necessary for the execution of a type of job as part of
the server’s response to a client’s request for work. This
will alleviate the need to explicitly install the modules on
all clients, remove the need to install the program to be
executed on the clients, and eliminate the possibility that
outdated or incorrectly configured instances of the pro-
grams are being executed on the clients.



Jaschob and Riffle Source Code for Biology and Medicine 2012, 7:8 Page 6 of 6
http://www.scfbm.org/content/7/1/8
Conclusions
JobCenter is a cross-platform job queue manager that is
designed to leverage computational resources in the het-
erogeneous ad hoc computing environment typically
available to biomedical research laboratories. JobCenter
allows for the efficient use of all available hardware
resources without the potentially onerous requirements
for building and maintaining a separate computer cluster.
It is relatively simple to install and configure. New
worker machines may be added to the pool by installing
the client software on virtually any computer in the
world, providing flexibility and nearly limitless horizontal
scalability. The client pull communication architecture
provides JobCenter with innate load balancing, since only
workers with unused capacity ask for more work. And,
because of the multithreaded nature of the client, each of
these workers capacity may be very efficiently utilized.

Availability and requirements

� Project name: JobCenter
� Project home page: http://code.google.com/p/

jobcenter
� Operating system(s): Platform independent (any

Java-capable OS)
� Programming language: Java
� Other requirements: Java 1.6 or higher, Tomcat 6 or

higher
� License: Apache 2.0
� Any restrictions to use by non-academics: None

Abbreviations
HTTP: Hypertext Transfer Protocol; XML: Extensible Markup Language;
JRE: Java Runtime Environment; WAR: Web Application Archive;
RDBMS: Relational Database Management System; SQL: Structured Query
Language; GUI: Graphical User Interface; YRC: Yeast Resource Center.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MR conceived of and directed the project, designed the basic architecture,
and prepared the manuscript. DJ designed the software, performed all
programming, set up the source code repository, and prepared user
documentation. All authors read and approved the final manuscript.

Acknowledgments
The authors would like to thank Vagisha Sharma (for fruitful discussion from
the beginning) and Michael Wilson (for developing the included BLAST
module). This work is supported by grants P41 RR11823 from NCRR (National
Center for Research Resources) and P41 GM103533 from NIGMS (National
Institute of General Medical Studies).

Received: 7 October 2011 Accepted: 25 July 2012
Published: 30 July 2012

References
1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment

search tool. J Mol Biol 1990, 215(3):403–410.
2. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS: Probability-based protein

identification by searching sequence databases using mass
spectrometry data. Electrophoresis 1999, 20(18):3551–3567.
3. Yates JR 3rd, Eng JK, Mc Cormack AL: Mining genomes: correlating
tandem mass spectra of modified and unmodified peptides to
sequences in nucleotide databases. Anal Chem 1995, 67(18):3202–3210.

4. Deutsch EW, Mendoza L, Shteynberg D, Farrah T, Lam H, Tasman N, Sun Z,
Nilsson E, Pratt B, Prazen B, et al: A guided tour of the Trans-Proteomic
Pipeline. Proteomics 2010, 10(6):1150–1159.

5. Reynolds SM, Kall L, Riffle ME, Bilmes JA, Noble WS: Transmembrane
topology and signal peptide prediction using dynamic bayesian
networks. PLoS Comput Biol 2008, 4(11):e1000213.

6. Lipman DJ, Pearson WR: Rapid and sensitive protein similarity searches.
Science 1985, 227(4693):1435–1441.

7. Riffle M, Davis TN: The Yeast Resource Center Public Image Repository:
A large database of fluorescence microscopy images. BMC Bioinformatics
2010, 11:263.

8. Riffle M, Malmstrom L, Davis TN: The Yeast Resource Center Public Data
Repository. Nucleic Acids Res 2005, 33(Database issue):D378–D382.

doi:10.1186/1751-0473-7-8
Cite this article as: Jaschob and Riffle: JobCenter: an open source, cross-
platform, and distributed job queue management system optimized for
scalability and versatility. Source Code for Biology and Medicine 2012 7:8.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://code.google.com/p/jobcenter
http://code.google.com/p/jobcenter

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Overall architecture
	Client
	Server
	Graphical user interface
	Security

	Results and discussion
	Using JobCenter
	Graphical user interface
	Current usage
	Future directions

	Conclusions
	Availability and requirements
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	References

